Scientific Report HDAC4 promotes Pax7-dependent satellite cell activation and muscle regeneration

نویسندگان

  • Moon-Chang Choi
  • Soyoung Ryu
  • Rui Hao
  • Bin Wang
  • Meghan Kapur
  • Chen-Ming Fan
  • Tso-Pang Yao
چکیده

During muscle regeneration, the transcription factor Pax7 stimulates the differentiation of satellite cells (SCs) toward the muscle lineage but restricts adipogenesis. Here, we identify HDAC4 as a regulator of Pax7-dependent muscle regeneration. In HDAC4deficient SCs, the expression of Pax7 and its target genes is reduced. We identify HDAC4-regulated Lix1 as a Pax7 target gene required for SC proliferation. HDAC4 inactivation leads to defective SC proliferation, muscle regeneration, and aberrant lipid accumulation. Further, expression of the brown adipose master regulator Prdm16 and its inhibitory microRNA-133 are also deregulated. Thus, HDAC4 is a novel regulator of Pax7-dependent SC proliferation and potentially fate determination in regenerating muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HDAC4 promotes Pax7-dependent satellite cell activation and muscle regeneration.

During muscle regeneration, the transcription factor Pax7 stimulates the differentiation of satellite cells (SCs) toward the muscle lineage but restricts adipogenesis. Here, we identify HDAC4 as a regulator of Pax7-dependent muscle regeneration. In HDAC4-deficient SCs, the expression of Pax7 and its target genes is reduced. We identify HDAC4-regulated Lix1 as a Pax7 target gene required for SC ...

متن کامل

TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis.

Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regenera...

متن کامل

MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling

BACKGROUND Denervation-induced skeletal muscle atrophy results in significant biochemical and physiological changes potentially leading to devastating outcomes including increased mortality. Effective treatments for skeletal muscle diseases are currently not available. Muscle-specific miRNAs, such as miR-206, play an important role in the regulation of muscle regeneration. The aim of the presen...

متن کامل

Plasticity and recovery of skeletal muscle satellite cells during limb regeneration.

Salamander limb regeneration depends on local progenitors whose progeny are recruited to the new limb. We previously identified a Pax7(+) cell population in skeletal muscle whose progeny have the potential to contribute to the regenerating limb. However, the plasticity of individual Pax7(+) cells, as well as their recovery within the new limb, was unclear. Here, we show that Pax7(+) cells remai...

متن کامل

Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells.

Compensatory growth and regeneration of skeletal muscle is dependent on the resident stem cell population, satellite cells (SCs). Self-renewal and maintenance of the SC niche is coordinated by the paired-box transcription factor Pax7, and yet continued expression of this protein inhibits the myoblast differentiation program. As such, the reduction or removal of Pax7 may denote a key prerequisit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014